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Abstract River restoration is one of the most prominent areas of applied water-resources science. From
an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of
channel form, restoration has expanded to incorporate a wide variety of management activities designed
to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers,
and entire river networks in urban, agricultural, and less intensively human-altered environments. We crit-
ically examine how contemporary practitioners approach river restoration and challenges for implement-
ing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems,
and the role of restoration as a social process. We also examine challenges for scientific understanding in
river restoration. These include: how physical complexity supports biogeochemical function, stream
metabolism, and stream ecosystem productivity; characterizing response curves of different river compo-
nents; understanding sediment dynamics; and increasing appreciation of the importance of incorporating
climate change considerations and resiliency into restoration planning. Finally, we examine changes in
river restoration within the past decade, such as increasing use of stream mitigation banking; development
of new tools and technologies; different types of process-based restoration; growing recognition of the
importance of biological-physical feedbacks in rivers; increasing expectations of water quality improve-
ments from restoration; and more effective communication between practitioners and river scientists.

1. Introduction

Basic and applied water-resources science has matured considerably during the half century that Water
Resources Research has been published. River restoration is one of the most prominent areas of applied
water-resources science, supporting a multibillion dollar industry across many countries and helping to
drive fundamental river research to address knowledge gaps that limit successful restoration. Mounting
global concerns about water and environmental sustainability have driven the development and accelera-
tion of river restoration practice and science. Drivers of river impairment, public interest in restoring rivers,
and the need to ground restoration practice in scientific knowledge about river processes are all likely to
continue to be important. This makes 2015 an opportune time at which to take stock of river restoration’s
history, contemporary status, and likely future in the context of research in water resources.

Here we first review the historical development of river restoration to provide a context for discussing the
current scope of restoration efforts. We then provide critical perspectives on how the river science commu-
nity conceptualizes restoration, challenges to implementing restoration designs, challenges for understand-
ing river response to restoration efforts, and how river restoration has changed during the past decade. We
conclude with a discussion of the importance of river restoration both as a fundamental testing ground for
scientific understanding of rivers and as a reflection of societal attitudes toward rivers and their ability to
sustain functional ecosystems.

2. What is River Restoration?

River restoration is used to describe a variety of modifications of river channels and adjacent riparian zones
and floodplains, and of the water, sediment, and solute inputs to rivers [Bennett et al., 2011]. These modifica-
tions share the goal of improving hydrologic, geomorphic, and/or ecological processes within a degraded
watershed and replacing lost, damaged, or compromised elements of the natural system [Wohl et al., 2005].
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Restoration is sometimes distinguished from rehabilitation, but we use restoration as including river man-
agement and engineering that ranges from isolated structural modifications such as bank stabilization or
riparian fencing, to manipulations of ecosystem processes and biota across large river basins over a period
of decades [e.g., Warne et al., 2000; Bloesch and Sieber, 2003] (Table 1). Bernhardt and Palmer [2011] make a
useful distinction between restoration projects designed primarily to reconnect rivers and projects designed
primarily to reconfigure rivers. Reconnection efforts typically involve the removal or retrofitting of infrastruc-
ture that had previously been installed to limit the interaction between rivers and their floodplains (e.g., lev-
ees, canals) or to disconnect longitudinal flows (dams). In contrast, reconfiguration efforts aim to change
the physical structure of the stream or its riparian zone through reshaping, replanting or reconstruction.

Determining what constitutes improved river conditions is highly subjective. Improvements may focus on
protection of property, or esthetic or recreational enhancements that do not necessarily improve ecological
functions [Bernhardt et al., 2007]. Improvements may also focus on creating conditions that are not particu-
larly natural or historically, geomorphically, or ecologically appropriate. In this sense, restoration is an unfor-
tunate term because the word implies bringing a river system back to its former condition. Apart from
uncertainty as to what point in time is being restored [Van Diggelen et al., 2001; Ward et al., 2001; McDonald
et al., 2004], or even what the former condition of a river was [Graf, 1996; Wohl and Merritts, 2007], there are
many situations in which true restoration is neither feasible nor desirable.

A more pragmatic approach is to regard river restoration as one facet of river management, but with a dif-
ferent goal to the river management that dominated most of the 20th century: that is, restoration can be
differentiated from other forms of management in that it attempts to create or maintain some aspect of
river form and function that is desirable apart from hazard reduction [Palmer et al., 2005]. River restoration
can thus include projects designed to improve fish habitat, water quality, or river recreation, for example.
We distinguish ecological river restoration that assists the recovery of ecological integrity in a degraded
watershed by reestablishing the processes necessary to support the natural ecosystem within the water-
shed [Wohl et al., 2005; Pander and Geist, 2013] from restoration intended for other outcomes such as
enhanced recreation.

3. Historical Development of River Restoration

People have manipulated rivers for esthetic and recreational purposes for more than a century. Esthetically
driven manipulations are commonly designed to create a river form that approximates a single-thread,

Table 1. Common River Restoration Goalsa

Goal Description

Esthetics/recreation/education Activities that increase community value: use, appearance, access, safety, and knowledge
Bank stabilization Practices designed to reduce or eliminate erosion or slumping of bank material into the river

channel; this category does not include stormwater management
Channel reconfiguration Alteration of channel geometry, planform, and/or longitudinal profile and/or daylighting (convert-

ing pipes or culverts to open channels); includes meander restoration and in-channel structures
that alter the thalweg

Dam removal/retrofit Removal of dams and weirs or modifications/retrofits to existing dams to reduce negative impacts;
excludes dam modifications that are simply for improving fish passage

Fish passage Removal of barriers to upstream/downstream migration of fishes; includes the physical removal of
barriers, construction of alternative pathways, and migration barriers placed at strategic loca-
tions along streams to prevent undesirable species from accessing upstream areas

Floodplain reconnection Practices that increase the inundation frequency, magnitude, or duration of floodplain areas and/
or promote fluxes of organisms and materials between channels and floodplain areas

Flow modification Practices that alter the timing and delivery of water quantity (does not stormwater management);
typically but not necessarily associated with releases from impoundments and constructed flow
regulators

Instream habitat improvement Altering structural complexity to increase habitat availability and diversity for target organisms
and provision of breeding habitat and refugia from disturbance and predation

Instream species management Practices that directly alter aquatic native species distribution and abundance through the addi-
tion (stocking) or translocation of animal and plant species and/or removal of exotic species;
excludes physical manipulations of habitat/breeding territory

Land acquisition Practices that obtain lease/title/easements for streamside land for the explicit purpose of
preservation or removal of impacting agents and/or to facilitate future restoration projects

aDefinitions from National River Restoration Science Synthesis Project.
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meandering channel with relatively open riparian woodland [Kondolf, 2006]. Recreationally driven river res-
toration dates to early 19th century instream structures designed to improve trout fishing [Van Cleef, 1885;
Hubbs et al., 1932; Thompson and Stull, 2002; Thompson, 2006, 2013].

Until the end of the 20th century, however, river manipulation for esthetic and recreational purposes remained
the exception to a more general approach of managing rivers concerned with enhancing navigation and
reducing the risks of loss of life and property. Under this management paradigm, river corridors throughout
Eurasia and North America were extensively modified [Wohl, 2014], typically with the cumulative effect of cre-
ating more uniform, physically simplified, and ecologically less diverse and functional river corridors (Figure 1)
[Poff et al., 2007; Rahel, 2007; Liermann et al., 2012]. Growing recognition of how severely and extensively past
river engineering has altered rivers has in turn contributed to the growth in river restoration.

Initially, restoration focused on physical manipulation of channel form, with creation of fish habitat com-
monly persisting as a primary objective, and accelerating during the 1980s [e.g., Gowan and Fausch, 1996].
Common approaches emphasized bioengineering using living plants [Evette et al., 2009] or dead wood [Les-
ter and Boulton, 2008; Abbe and Brooks, 2011] and other modifications of channel morphology [Rosgen,
2011]. More recent evolution toward promoting channel-floodplain connectivity and other process-based
restoration is discussed in the following section.

Form-based restoration oriented toward fish was joined in the latter half of the 20th century by a branch of
river restoration focused primarily on improving water quality. The emphasis on water quality was driven
initially, in the USA, by the 1972 Clean Water Act and societal concern about water pollution, and subse-
quently, in the European Union, by the 2000 Water Framework Directive [Bennett et al., 2011; Campana
et al., 2014], as well as research indicating that management of the riparian corridor could in some cases
influence nutrient flux to rivers [e.g., Burt and Haycock, 1993]. As a result of water quality requirements, res-
toration goals have broadened to include limiting point and nonpoint source pollution, restoring riparian
corridors and floodplains to enhance retention of incoming pollutants [Prato and Hey, 2006; Craig et al.,

Figure 1. Example of river restoration along the Vindel River in Sweden. (a) Originally modified to disconnect overbank areas and second-
ary channels during floating of cut timber downstream, (b) the Vindel is now being restored through removal of bank structures such as
the stone wall. Upper photograph courtesy of Christer Nilsson.
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2008], and manipulating flow and
channel form to enhance uptake, stor-
age, or transfer of diverse forms of
pollutants.

4. Current Scope of River
Restoration

The broad array of activities labeled as
river restoration has accelerated during
the past three decades, particularly in
the USA [Bernhardt et al., 2005, 2007],
Europe [Brookes, 1990; Sear, 1994;
McDonald et al., 2004; Clifford, 2012],
and Australia [Brierley and Fryirs, 2005].
Within the last decade, different types
of process-based restoration have
increased in prominence, in concert
with numerous calls from researchers
to prioritize river function or process in

restoration, rather than only river form [e.g., Kondolf, 1998; McDonald et al., 2004; Bernhardt and Palmer,
2007, 2011]. This has included restoration that has emphasized promoting channel-floodplain connectivity
[e.g., Tockner et al., 1999; Shields et al., 2011; Gumiero et al., 2013], longitudinal connectivity and partial resto-
ration of water and sediment fluxes [e.g., Shafroth et al., 2010; Konrad et al., 2011], and ecological productiv-
ity [e.g., Lepori et al., 2005; Palmer et al., 2010a, 2010b]. The results of these process-based restoration
approaches are increasingly evaluated with respect to biotic response [e.g., Helfield et al., 2007; Walther and
Whiles, 2008; Lorenz et al., 2009]. Simultaneously, the scope of river restoration has expanded to encompass
a broader range of river types, beyond the prototypical midorder, pool-riffle meandering river. These span
headwater streams in diverse settings, rivers altered by dams, large lowland rivers, and large drainage net-
works where restoration may involve broad, multidisciplinary efforts.

4.1. Small to Medium-Sized Rivers
Restoration efforts have moved up the drainage network, to smaller and commonly steeper streams. Artifi-
cial steps designed based on step-pool morphological criteria have been introduced as an alternative to
check dams for stabilizing mountain rivers and reducing debris-flow hazards, with observed ecological ben-
efits including organic matter retention and increased macroinvertebrate richness and diversity compared
to traditional grade-control methods (Figure 2) [Comiti et al., 2009]. Restoration of steep channels in urban
and rural settings has adopted research insights on the hydraulics and morphology of step-pool channels
into design criteria, applying geometric relationships such as the ratio of step height:length:slope from nat-
ural step-pool streams to constructed channels [e.g., Chin et al., 2009]. However, coarse-grained step-pool
channels, because of their ability to resist erosion and channel change during high flows, are also created in
urban settings that would naturally have lower-gradient headwater streams. Palmer et al. [2014a] describe
this form of stormwater conveyance for eroded, urban, coastal plain watersheds in the Chesapeake Bay
region of the USA and note the limited ability of such streams to provide other desirable functions such as
nitrogen retention or removal.

Within urban areas, stream restoration most commonly focuses on smaller streams and improving water
quality and protecting infrastructure, although recreational and esthetic benefits can help to justify the
costs of restoration [Kenney et al., 2012]. Constraints imposed by urban infrastructure and failure to
adequately consider the large hydraulic forces that can occur in narrow, rigid channels [Bain et al., 2014]
continue to create substantial challenges for urban stream restoration. As a result, urban river restoration
may be better seen as urban river naturalization [Rhoads et al., 1999]. Moreover, the reach-scale restoration
common in urban areas does not effectively mitigate the watershed-scale physical, hydrological, and chemi-
cal alterations that result in loss of sensitive taxa and reductions in water quality [Bernhardt and Palmer,
2011; Doyle and Shields, 2012]. Restoring a stream can enhance public awareness and appreciation of the

Figure 2. Example of restored step-pool sequence, here along the Maso di Spine-
lle River in Italy. Photograph courtesy of Francesco Comiti.
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river network beyond the project reach [Åberg and Tapsell, 2013; Bain et al., 2014] and thus increase commu-
nity support for watershed health, but there is a significant gap between what the public considers an
acceptable level of restoration and what river scientists perceive as a functional stream ecosystem [e.g.,
Eden et al., 2000; Cockerill and Anderson, 2014]. We consider these social dimensions in more detail below.

Restoration of mining-impacted headwater channels has included construction of water-quality treatment
facilities and reconstruction of stream channels, in some cases as step-pool systems, in areas topographi-
cally altered by mining [e.g., Palmer et al., 2010a, 2010b; Byrne et al., 2012]. A synthesis of more than 400
stream mitigation projects in mining-impacted headwater streams of the southern Appalachian region of
the USA, however, found that 97% of the projects resulted in suboptimal or marginal habitat even after 5
years of monitoring [Palmer and Hondula, 2014]. Sites reclaimed more than 20 years previously still contrib-
uted to significant degradation of water quality, partly because shorter lengths of perennial headwater
streams were assumed to equate to longer lengths of ephemeral and intermittent streams destroyed during
mining, resulting in a net loss of small streams and their functions, and partly because of an emphasis on
creating channel forms that do not support lost biogeochemical and biological functions [Palmer and Hon-
dula, 2014].

Low-gradient headwater streams in agricultural areas have been intensively altered by land drainage, chan-
nelization, grazing, and, in some regions, mill dams [Merritts et al., 2013]. Restoration of streams with numer-
ous abandoned mill dams is problematic because of the thick sequences of millpond sediments into which
channels incised after dams were breached. Bank erosion along these channels remains a substantial source
of sediment and nutrients for decades after dam breaching [Merritts et al., 2013]. In many regions, historical
clearing of native upland vegetation in association with agriculture created substantial aggradation in valley
bottoms in the absence of mill dams [Knox, 2006; Latocha and Migo�n, 2006; James and Lecce, 2013; Trimble,
2013] and these legacy sediments also continue to create sources of sediment and nutrients to streams
[Hupp et al., 2013; Pizzuto, 2014]. Some restoration projects have removed legacy sediments along valley
bottoms in an attempt to reconnect channels with floodplains and recreate floodplain wetlands, but details
such as the presence of impermeable layers that restrict upward flow of groundwater or removal of the
organic-rich horizon that retains soil moisture for plant roots can limit the effectiveness of this reconnection
[Booth and Loheide, 2010, 2012]. Restoration of channelized agricultural streams can involve remeandering
[Wade et al., 2002; Lorenz et al., 2009], during which a sinuous channel is artificially created and subse-
quently allowed to adjust to some degree, or cessation of activities such as dredging and bank stabilization
that simplify or confine channels [Rhoads and Herricks, 1996]. Although remeandering and naturalization
can improve ecological function of headwater agricultural streams [Lorenz et al., 2009], the level of
improved function is typically limited because of continued watershed-scale stressors. For example, restora-
tion of an agricultural stream in Indiana, USA consisting of an inset floodplain beside a channelized ditch
produced only minor (< 10%) improvements in nitrate removal because of continuing high nitrate inputs
from croplands in the watershed [Roley et al., 2012a].

Restoration of small to midsized agricultural rivers can also involve removal or limitation of stressors such as
riparian grazing. Reduction of riparian grazing is one of the most successful and rapid means to restore
diverse riparian vegetation, stream bank stability, water quality, and macroinvertebrate and fish commun-
ities [Rhodes et al., 2007; Hickford and Schiel, 2014] when other factors (e.g., flow regulation) do not limit
recovery.

Water quality remains a substantial motivation for restoration of small to medium-sized rivers in urban and
agricultural settings. Much of this restoration focuses on retaining water in off-channel storage areas such
as the floodplain or hyporheic zone so that contaminants traveling adsorbed to fine sediment will settle
from suspension and enter storage reservoirs (e.g., heavy metals in floodplains; Macklin et al., 2006] or
become available for biological processing and uptake (e.g., nitrates in floodplains and hyporheic zones). In
response to the U.S. Environmental Protection Agency’s 2010 guidelines for total maximum daily load
within the Chesapeake Bay watershed [US EPA (United States Environmental Protection Agency), 2010], for
example, the Chesapeake Bay program enacted protocols that give water quality mitigation credits for
stream restoration, including hyporheic restoration, reconnecting channels and floodplain, and protecting
banks [Berg et al., 2014]. Most river restoration projects do not consider issues surrounding hyporheic
exchange [Boulton, 2007; Gordon et al., 2013], however, despite the abundant scientific studies examining
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the effects of diverse restoration strategies on hyporheic processes [Kasahara and Hill, 2006; Hester and
Gooseff, 2010, 2011; Schneider et al., 2011].

Restoration can ameliorate water quality in some scenarios [Kaushal et al., 2008; Klocker et al., 2009; Roley
et al., 2012a, 2012b; Lawrence et al., 2013], but tangible improvements such as reduction of nutrient inputs
have proven to be difficult and elusive. In many cases water quality restoration goals have not been
achieved because of lack of sufficient residence time or sufficient proportion of flow affected [Azinheira
et al., 2014]. Details matter: small changes in stream characteristics such as flow velocity, bedform geometry,
or hydraulic conductivity and porosity of the bed sediment can significantly alter the dynamics of hyporheic
exchange and rate of contaminant removal in hyporheic zones [Grant et al., 2014; Menichino and Hester,
2014]. Reducing nutrients depends on how effectively the riparian cover buffers streams from nutrient sour-
ces [Baker et al., 2006] and the longitudinal continuity of the buffer [Weller and Baker, 2014]. Significant
improvements in habitat, water quality, and benthic macroinvertebrates can lag riparian forest restoration
by 10–15 years [Orzetti et al., 2010] and excess nutrient inputs can be so large that riparian zones remove
less than half of the inputs [Weller and Baker, 2014]. The most effective restoration designs include features
that enhance the processing and retention of different forms of nitrogen and for a wide range of flow con-
ditions (e.g., stream-wetland complexes that buffer high flows), as well as designs that reflect important
controlling factors such as position in the watershed, surface-subsurface exchanges, flow regime, and nitro-
gen concentrations [Filoso and Palmer, 2011].

4.2. Medium-Sized to Large Rivers
Restoration using structural and more process-based approaches has also moved down the drainage net-
work to larger rivers. Modifications of levees via setbacks, notching, or removal have been implemented on
several larger rivers in an effort to reduce flooding hazards and to restore river-floodplain habitat connectiv-
ity and associated ecosystem and geomorphic processes [Hughes and Rood, 2003; Zhang and Mitsch, 2007;
Konrad et al., 2008; Marks et al., 2014; Nakamura et al., 2014]. For example, along rivers in the Central Valley
of California, USA (e.g., the extensively leveed and riprapped Sacramento River), setbacks or intentional
breaching of segments of old, deteriorating levees have locally restored formation of sand-splay complexes
during floods [Florsheim and Mount, 2002]; improved wildlife habitat and reduced flooding risks may have
also resulted [Opperman et al., 2010]. Reconnection of off-channel habitat along the Chilliwack River in Brit-
ish Columbia, Canada created new habitat used by a third of the wild coho salmon (Oncorhynchus kisutch)
smolts within a few years of project completion [Ogston et al., 2015]. The Kissimmee River in Florida, USA is
a well-documented example of successful reconnection restoration. Channelized by the U.S. Army Corps of
Engineers between 1962 and 1971, more than 70 km of the Kissimmee were restored to a sinuous river con-
nected to the floodplain starting in 1992. As detailed in a 2014 special issue of Restoration Ecology, restora-
tion has resulted in ecologically significant changes in numerous ecosystem components, including water
quality [Colangelo, 2014], benthic habitat and macroinvertebrates [Koebel et al., 2014], food web structure
and ecosystem function [Jordan and Arrington, 2014], and abundance and species richness of wading birds
and waterfowl [Cheek et al., 2014]. Globally, reconnection efforts have been limited in extent, relative to the
scale of anthropogenic channel confinement, but are promising examples of restoration that reduces haz-
ards and embraces geomorphic and ecosystem process knowledge.

Restoration on larger, dammed rivers has also sought to address dam-related impacts using process-based
approaches oriented toward restoring water and sediment fluxes. Flow releases from dams have been
manipulated in some systems to mimic elements of natural flow regimes and achieve downstream ecosys-
tem objectives [Galat et al., 1998; Ortlepp and Murle, 2003; Flessa et al., 2013]. Ecologically oriented high-
flow releases have aimed to establish floodplain connectivity and otherwise benefit aquatic organisms [Kon-
rad et al., 2011] and, via the timing and recession rates of dam releases, to promote vegetation reestablish-
ment such as cottonwood recruitment [Rood et al., 2003; Shafroth et al., 2010]. Documented ecological
effects of environmental flow releases include shifts in macroinvertebrate communities toward predam con-
ditions [Robinson, 2012], greater mortality among nonnative Tamarix seedlings than among native Populus
[Wilcox and Shafroth, 2013], and reproduction of the endangered cui-ui sucker [Rood et al., 2005]. Many
environmental flow releases have focused primarily on fish [e.g., Jacobson and Galat, 2008], but in general
there appears to be little direct evidence of resulting improvements in fish communities. Geomorphically
based high-flow releases from dams have aimed to mitigate dam-related changes in sediment dynamics,
for example in Grand Canyon where flow releases have sought to redistribute sand and rebuild bars and
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have been timed to take advantage of tributary sediment inputs [e.g., Melis, 2011; Mueller et al., 2014]. Sedi-
ment deficits downstream of dams have also been addressed by gravel augmentation, including on the
Rhine River, where annual coarse-sediment additions are oriented toward protecting downstream infra-
structure, and elsewhere in Europe, Japan, and the US, where the focus of such efforts is most commonly
on fish habitat restoration [Kondolf et al., 2014]. Bypassing sediment around dams via a range of engineer-
ing approaches represents a promising yet rarely implemented method of maintaining downstream sedi-
ment regimes [Kondolf et al., 2014].

More comprehensive restoration of dammed rivers has entailed dam removal. Both the pace of dam
removal and the size of dams removed have increased, restoring fluxes of water, sediment, wood, and
nutrients, as well as connectivity for aquatic organisms [e.g., Major et al., 2012; Wilcox et al., 2014; East et al.,
2015; O’Connor et al., 2015]. For many types of stream restoration, benefits or achievement of objectives are
difficult to evaluate. Dam removal effects (e.g., on fish passage) tend to be more immediate and visible [e.g.,
Kornis et al., 2014], although the details of fish dispersal following dam removal depend on factors such as
life history patterns of each species, proximity to source populations, and habitat diversity [Pess et al., 2014].
Removal of grade-control structures, such as on the Mareit River, Italy (Figure 3), has represents another
approach to restoring longitudinal connectivity.

Structural approaches to river restoration have also been applied to larger rivers, both to mitigate ongoing
dam impacts and as part of dam-removal projects. In the Kootenai River, Idaho, USA, channel modifications,
including J-hooks and reconstruction of side channels, have been implemented in a reach downstream of
Libby Dam in an effort to improve sturgeon productivity and spawning success. Structural approaches on
the Kootenai have been complemented by broader efforts to improve floodplain and channel ecological
function, awareness of flow and sediment supply, and application of tools such as morphodynamic model-
ing to guide restoration [McDonald et al., 2010; Kootenai Tribe of Idaho, 2013]. In postdam-removal scenarios
where managers wish to control erosion in formerly impounded reaches, new channel construction has
been used as an alternative to allowing channel formation to evolve naturally. In the Clark Fork River, Mon-
tana, USA, new channel construction in the reach formed following the removal of Milltown Dam, where

Figure 3. Example of river restoration through removal of grade-control structures along the Mareit River, Italy. View on the left is from
2005, prior to restoration. View on the right is from 2010, after restoration. Photograph courtesy of the Department of Hydraulic Engineer-
ing, Autonomous Province of Bozen-Bolzano, Italy.
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the presence of contaminated reservoir sediments constrained management, exemplifies the application of
structural restoration approaches to larger rivers [Woelfle-Erskine et al., 2012]. Efforts to reconstruct sections
of larger rivers for restoration goals are highly experimental, and the response of such projects to large
floods and/or continued sources of upstream degradation bear watching.

5. Critical Perspectives on River Restoration

Even as broader consideration of river process and restoration outside of the river corridor has taken root,
the research community has emphasized two persistent themes in river restoration: the limited monitoring
of restoration projects to quantitatively and objectively determine whether restoration goals were achieved
[e.g., Bernhardt et al., 2005] and the high proportion of restoration projects that do not achieve significant
improvements in river function as reflected in criteria such as water quality or biological communities [Lep-
ori et al., 2005; Bernhardt and Palmer, 2011; Violin et al., 2011; Palmer and Hondula, 2014]. We can add to
these a third challenge of more effectively incorporating the nonscientific community into river restoration
planning and implementation [Eden et al., 2000; Pfadenhauer, 2001; Wade et al., 2002; Eden and Tunstall,
2006; Eden and Bear, 2011]. The apparent widespread failure of many restoration approaches highlights the
need to understand why a substantial portion of restoration projects do not achieve their objectives and
how the research community can contribute to making restoration more effective. We see three core chal-
lenges that research needs to address if progress is to be made in river restoration: (1) the problem of con-
ceptualization and how we approach restoration; (2) developing restoration projects at the interface of
science and society; and (3) in relation to the science of restoration itself.

5.1. The Problem of Conceptualization: How do We Approach Restoration?
Thinking about how we conceptualize river restoration is crucial to a critical analysis of existing restoration
practice. The ecological literature conceptualizes restoration as a process [e.g., Hobbs and Norton, 1996;
Higgs, 1997; Hobbs and Harris, 2001]. Central to this process is identifying restoration goals, commonly
based on an appropriate model of ecosystem response, as well as the recovery of biotic community compo-
sition [Hobbs and Harris, 2001; Higgs, 1997; Hobbs and Norton, 1996]. Thus, a proper conceptualization of
river dynamics (physical, ecological, chemical) informs the identification of restoration goals or objectives,
and in turn, should determine how we evaluate the success of the restoration process.

Under the assumption that we can map ecosystems onto physical elements of the river environment
[Newson and Newson, 2000], restoration can be conceptualized as involving interventions to improve the
structure or form (e.g., pool-riffle topography), function (e.g., flow acceleration and deceleration, nutrient
uptake and release [e.g., Ehrenfeld, 2001; Ward et al., 2001]), diversity, and dynamics of river corridors [McDo-
nald et al., 2004]. Interactions between form and process are responsible for diversity (i.e., the spatial vari-
ability in physical habitat present) and dynamics (i.e., change in river channel structure through time).
Following Palmer et al. [2005], we should consider restoration as aiming to achieve a dynamic ecological
endpoint, ‘‘the least degraded and most ecologically dynamic state possible, given the regional context’’
[Palmer et al., 2005, 2010a, 2010b]. That is, we should be aiming to restore a dynamic state as characterized
by spatial and temporal variations in biotic abundance and composition that reflect those in reference sys-
tems, and channel geometry that changes in response to natural flow variability.

Recognizing the spatial and temporal variability of river ecosystems has at least three important compo-
nents. First, it counters the notion that restoration is about recovery to a particular equilibrium state, one
which is too often interpreted as a stable state [Adams, 1997; Hobbs and Harris, 2001]. River ecosystems
exhibit a natural or historical range of variability (HRV) in relevant parameters such as flow and sediment
regimes, channel form, or biological communities [Morgan et al., 1994] as a result of disturbances and other
changes in external forcing [Wohl, 2011]. Rivers respond to this variability in ways that maintain their diver-
sity. Thus, restoration must embrace the restoration of diversity and not simply restoration of a particular
river structure or form.

Second, recognition of spatial and temporal variability means that we need to rethink the role of history in
informing restoration projects. It counters the idea that restoration is about going back in time to identify a
particular river channel structure or form that should be restored. Rather, the role of historical enquiry is to
understand how the river works and how it has been impacted upon by watershed-scale changes. This
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information becomes the basis for identifying the necessary conditions for ecosystem recovery, and inform-
ing potential manipulations that sustain the processes and structures needed to support particular restora-
tion goals.

Third, recognition of spatial and temporal variability facilitates acceptance that the dynamics and diversity of
rivers are important for sustainable river restoration [Ward et al., 2001]. There should be variability in what we
expect to see, and where, within a river basin. The diversity identified (and restored) will necessarily scale with
the size of the basin being considered. Because rivers and the boundary conditions (climate, landscape, etc.)
that force them are dynamic, any particular spatial variability is unlikely to remain fixed in time. In turn, this
requires us to think critically about the kinds of metrics that we use to quantify rivers, and how these metrics
respond to river restoration efforts. There is much to be gained from ecological science, which has been sensi-
tive to the questions of spatial and temporal scale in the description of ecosystem properties.

Finally, considering diversity and dynamics is useful because it allows restoration to be tied to resilience
and recovery, and hence the importance of considering sustainability [e.g., Eden et al., 1999; Van Diggelen
et al., 2001; Whalen et al., 2002] as a metric during restoration. Ecological theory suggests that spatial envi-
ronmental heterogeneity should promote biological recovery [Holling, 1973; Gunderson, 2000], although
promoting ecologically relevant forms of heterogeneity can be challenging [Lepori et al., 2005].

The challenge that comes from this kind of conceptualization is its implementation. Should we restore
form/structure, function, or some combination of the two? Following Palmer et al. [1997] and McDonald
et al. [2004], we can distinguish three kinds of intervention: (1) ‘‘field of dreams,’’ where the desired conse-
quence of restoration (e.g., a meandering river) is identified and the river is engineered using a structure-
oriented approach focused on restoring the forms of the river that have been lost [Adams et al., 2004]; (2)
‘‘system function,’’ where more emphasis is placed upon restoring desired processes in the system, and the
system is allowed to develop in response to the restoration; and (3) a compromise or hybrid ‘‘keystone’’
approach which recognizes that crucial elements of both the structure and the function of a river may need
to be restored (e.g., riffle-pool units as keystones), but where there then needs to be scope for the river to
evolve in response to the introduced structure and function. Both the system function and the keystone
approach have gained favor among ecologists because the field-of-dreams approach emphasizes goods
and services such as recreation or water quality, rather than the processes necessary to deliver and to sus-
tain those goods and services [Christensen, 1997].

Distinguishing these three types of intervention emphasizes how interactions between structure and func-
tion create system dynamics and diversity, and the challenges this presents for river restoration [Shields,
1996]. An irony of river restoration is that restoring particular structures to a river (e.g., river meanders)
requires additional measures to manage the natural relationships between structure and function that may
result. For example, river meanders naturally lead to secondary circulation that can in turn lead to bank ero-
sion and bend migration. Restoring meanders should necessarily reintroduce these dynamics, but restora-
tion projects may involve the installation of structures such as bank revetments or bendway weirs to
counteract these processes.

All three types of intervention still require assessment of what should be restored, which involves identify-
ing an appropriate reference condition. For example, a field-of-dreams approach seeks to identify a possi-
ble river regime (e.g., slope, channel pattern, bed material) and to reinstate the morphology associated
with that regime as the reference condition to which the river must be restored. McDonald et al. [2004]
identify three problems with such an approach: (1) the assumption that a particular regime leads to a sin-
gular or reference river condition rather than there being two or more possible conditions [cf. Graf, 1988];
(2) the difficulty of identifying such a condition historically [cf. Van Diggelen et al., 2001; Ward et al., 2001];
and (3) the expectation that the river will be self-maintaining in the regime envisaged. Regime analyses
tend to produce statistically stable states only in the absence of external forcing. If a restored river occurs
within an evolving system (e.g., such as due to a change in discharge), then the state identified may not
be meaningful. Consequently, the notion of a reference condition has evolved in academic thinking
to consider an HRV [Morgan et al., 1994] that can provide a basis for identifying restoration options
[Wohl, 2011].

Applying HRV as a means of restoring rivers needs to recognize how human activities or wider environmen-
tal change might restrict the extent to which the variability characteristic of the reference period may be
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reintroduced [e.g., Palmer et al., 2005; Wy _zga et al., 2012a]. Although the system function approach and key-
stone approaches are more amenable to the idea of an HRV, such approaches may be difficult to implement
if the river corridor does not have the space available for the river to be dynamic, or if there are wider basin
constraints such as flow regulation that cannot be restored. There is now a good body of literature that
shows how it is possible to identify HRV [e.g., Downs et al., 2011; Fryirs et al., 2012; Julian et al., 2012; Rath-
burn et al., 2013] so as to inform restoration [e.g., Baillie et al., 2011; Rubin et al., 2012; Woelfle-Erskine et al.,
2012], but also recognizes that this variability may be evolving due to wider basin-scale changes that may
not necessarily be reversible [e.g., Petterson et al., 2010; Layzell et al., 2012; Persico and Meyer, 2013]. There is
much less research that has demonstrated how to implement an approach based upon restoring system
function [Palmer et al., 2014b].

The three distinct approaches to restoration also contrast different scales of intervention. The field-of-
dreams approach tends to focus on river reaches, or restoration of relatively short sections of river, with
objectives defined according to perceived local needs [Kondolf, 1998; Eden and Tunstall, 2006]. This may
also apply to system function and keystone approaches, but their focus on process restoration implies an
increase in the spatial scale of analysis. This reflects a recognition that effective restoration of individual river
reaches may be limited by fundamental root causes [e.g., Kondolf, 1998; Pedroli et al., 2002], such as the
impacts of altered inputs of water, sediment, nutrients, and contaminants from the entire watershed [Bern-
hardt and Palmer, 2011; Violin et al., 2011; Doyle and Shields, 2012]. It has been argued that a more basin-
scale approach is needed [e.g., Palmer et al., 2005; Lane et al., 2008], but such a change in scale raises new
challenges. First, any increase in spatial and temporal scale will also imply an increase in the range of issues
that have to be addressed in restoration [Adams et al., 2004], including channel-floodplain connectivity and
hyporheic exchange, for instance. Second, there may be limits to which larger scale (e.g., basin) manage-
ment may be feasible because as scale increases so will the number and range of organizations responsible
for and interested in restoration [Van Diggelen et al., 2001]. Third, the effects of basin-scale restoration may
be much harder to predict [Hughes et al., 2001] and it may take time for the restoration to result in a change
in river configuration. Finally, if increasing scale also implies increasing the range of issues to be considered,
then the benefits that result may be more than simply an improvement in river structure or function, and
other parameters such as water quality may improve [Jarvie et al., 2013]. This implies a more multicriteria
approach to setting and evaluating restoration goals [e.g., Pander and Geist, 2013]. We contend that it is not
surprising that examples of catchment or basin-scale restoration efforts remain relatively few [e.g., Ramch-
under et al., 2012; Waltham et al., 2014] as compared with more reach-scale initiatives.

5.2. The Critical Challenge of the Science-Society Interface
Even if it is possible to develop a clear conceptualization of river dynamics, to use this conceptualization to
inform restoration goals and in turn to identify the criteria or metrics that deem restoration a success, the
question arises as to who should be involved in setting objectives? In this section, we argue that river resto-
ration must be considered in reference to its social context [e.g., Wyant et al., 1995; Hobbs and Norton, 1996;
Higgs, 1997; Hobbs and Harris, 2001; Pfadenhauer, 2001] because of: (1) wider democratic questions over
who has standing to set an objective for the river [Eden and Tunstall, 2006]; and (2) practical questions, as
implementation of restoration may depend upon the acceptance of restoration outcomes by those who
live with a river and its floodplain [e.g., Tunstall et al., 1999, 2000; Buijs, 2009; Åberg and Tapsell, 2013].

Ecological restoration more generally did not originate as an academic science but as a citizen-led, public
project [Gross, 2002]: it was only during the 1990s that restoration ecology shifted as a result of academics’
desire to ground restoration more firmly in academic science. The origins of restoration, including river res-
toration, can be traced back to a desire to restore a different relationship between nature and society. Thus,
we can see the growth of an academic science of river restoration as an attempt to better define what this
‘‘nature’’ should be. But to see such definition and implementation as simply an academic issue would over-
look the origins of restoration as a social movement [Gross, 2002] and the constraints and opportunities
afforded to restoration through its role as a social process.

Restoration carries financial [Holl and Howarth, 2000] and other costs [Junker et al., 2007]. Developing a sus-
tained interest of local communities in river restoration [e.g., Åberg and Tapsell, 2013] is particularly impor-
tant for maintaining community support for the project. Rivers are a source of both potential value (e.g.,
recreation) but also substantial concern (e.g., flood risk) for those who live with them [e.g., Jacobs and Buijs,
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2011; Seidl and Stauffacher, 2013]. If restoration objectives are dependent upon the continued commitment
of those who live with the river or who influence policy decisions, then they have to be set in terms that are
socially relevant and acceptable [Tunstall et al., 1999, 2000; Junker et al., 2007; Buijs, 2009; Åberg and Tapsell,
2013; Yocom, 2014]. Social relevance is strongly bound to emotional and esthetic factors that govern
whether communities consider a restoration project to be successful [Buijs, 2009; Jacobs and Buijs, 2011;
Yocom, 2014]. Rivers may have acquired social value even if they are ecologically degraded [e.g., Adams,
1997; Junker et al., 2007] and research has shown that elements that a river restoration scientist might view
as necessary for a successful restoration in biophysical terms may not be the same as those that a commu-
nity might value [Che et al., 2014]. Further, the more natural elements of a river landscape, which may be
the aim of an ecologically driven restoration, may be viewed negatively (e.g., gravel bars in braided rivers;
Le Lay et al., 2013].

These observations show why rivers should be seen as a hybrid of nature and culture [Eden et al., 2000;
McDonald et al., 2004] and this has major implications for the implementation of river restoration projects.
However laudable scientifically or ecologically informed goals for restoration might be, a failure to consider
the interface between restoration science and society is likely to cause divergence among the goals of aca-
demics, practitioners, and those who live with rivers. Setting objectives and implementing river restoration
may have to attend to the communities that sustain it financially, culturally, and politically [e.g., Mann et al.,
2013; Seidl and Stauffacher, 2013]. Such attention may be needed to make river restoration a more demo-
cratically accountable process and to respect the origins of restoration as a social movement. It may also be
needed because of the powers that exist within communities to halt restoration projects. For instance, Swiss
water law was strengthened in 2011 to require cantons to have a plan and a timetable for the naturalization
of water courses. This imposes limits on the kind of river management that a canton can authorize and sup-
port financially and would seem to support river restoration. But the tradition of direct democracy in Swit-
zerland means that a river management project can be rejected by a popular vote if enough signatures can
be obtained. In this kind of system, methods for reconciling conflicting objectives for river restoration are
imperative to achieving restoration. In other countries, such as England and Wales, river restoration may be
part of a planning process in which a planning application is considered by trained planning officers, who
make a recommendation to the democratically elected government officials, who then decide on the appli-
cation in light of overarching legislation. A contentious restoration project can also be derailed through this
process, even if not as easily as in Switzerland. Thus, there may be an imperative to incorporate social values
into river restoration to reduce the probability that a project may be slowed or abandoned as a result of
established decision-making processes [Junker et al., 2007] or that the project may be altered to the detri-
ment of achieving ecological enhancement [Åberg and Tapsell, 2013]. In short, it requires new ways of prac-
ticing river restoration that challenge old ways of managing rivers socially and politically [Eden and Tunstall,
2006].

Research has shown that people can develop enthusiasm for restoration if appropriate mechanisms for
community engagement can be identified [Tunstall et al., 2000]. Wider experience of public participation in
river management provides some context for how such community involvement might be achieved [Lane
et al., 2011]. (1) In a deficit approach, the public is assumed to lack sufficient knowledge, such that educa-
tion is required for them to accept the options being proposed. However, people who live with their rivers
are typically experts in their own right [Collins and Evans, 2002; Eden and Bear, 2011]. Simply treating the
public as deficient and needing to be educated [Sturgis and Allum, 2004] in the hope that they may make
decisions more rationally [Callon, 1999] imposes the opinion of certified experts as to what is the objective
of restoration. (2) In a deliberative approach, the public are consulted over management options produced
by those with (certified) expertise. This recognizes that citizens may have substantial knowledge in relation
to a particular question [e.g., Yearley, 2006]. An important consideration is where in a project public consul-
tation occurs on the spectrum between ‘‘downstream,’’ in which engagement occurs once a project pro-
posal has been developed and public opinion is sought, and ‘‘upstream,’’ in which engagement includes
discussion of the objectives before a project has been designed. This latter form is more radical, but has
been tried in watershed restoration [e.g., Costanza and Ruth, 1998; Johnson, 2009]. (3) Approaches based on
coproduction see public involvement as occurring through a process of negotiation and renegotiation,
throughout and beyond the management process (i.e., starting before objectives are set). Coproduction rec-
ognizes that deliberation on its own tends to leave intact the knowledge and desires of certified experts and
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managers and those of citizens [Lane et al.,
2011], even if they stand in opposition [e.g.,
De Groot and De Groot, 2009; Jacobs and
Buijs, 2011; Seidl and Stauffacher, 2013]. Thus,
public engagement through deliberation
tends to reinforce the power of political
processes in decision-making, sometimes to
the detriment of the knowledge upon which
those processes are supposedly based. Cop-
roduction recognizes that science proceeds
by putting existing knowledge on trial (i.e.,
by hypothesis testing) [Callon, 1999], recog-
nizing that we tend to learn most when we
find that generally accepted hypotheses can
no longer be sustained. By coproducing
knowledge about the river environment, we
have the opportunity to challenge existing
hypotheses (academic or lay), to produce
new knowledge and so to move beyond the
impasse that can follow where public
engagement relies upon deliberation over

one set of experts’ reports (for a related example, see Lane et al. [2011] for how this was undertaken in relation
to flood risk management).

Given the shift within some western societies toward new forms of more upstream or democratic decision-
making, and the recognition of coproduction as a means of doing this, river restoration practitioners will have
increasingly to embark upon public engagement activities and research is needed to test different ways through
which coproduction may be achieved. This will need to include reflection upon who should be involved in pub-
lic engagement [Harrison and Mort, 1998; Rayner, 2003; Junker et al., 2007; Stirling, 2008] and who should set res-
toration objectives, which may not always be evident, especially if river restoration is being attempted over
larger spatial scales and where there will be a greater range of ‘‘publics’’ to engage [Maynard, 2013]. There is also
a possible threat to river restoration that follows from these new forms of democratic decision-making, if
human-centric concerns become dominant and if we do not also research how key parts of an ecosystem can
and should be represented during public engagement (e.g., who speaks for a ‘‘fish,’’ and how). Such research
will require a deeper involvement of the social sciences and humanities in river restoration research.

5.3. Challenges for Scientific Understanding in River Restoration
Compounding the socioeconomic and other challenges for implementing river restoration discussed above
are persisting gaps in scientific understanding of the ecological and physical processes, and of the feedbacks
among them, fundamental to river restoration. The need to understand how different aspects of physical
complexity assist or result in biogeochemical function, stream metabolism, stream ecosystem productivity,
and contaminant degradation is particularly pressing. Although correlations between physical complexity and
ecological function have been hypothesized [Pinay et al., 1999; McClain et al., 2003; Craig et al., 2008], research
has mostly focused on differences between physically more or less complex river segments rather than on
quantitative predictions of how increasing complexity equates to predictable increases in specific measures of
ecosystem function. Different forms of complexity have been shown to increase nutrient retention and uptake
[Gooseff et al., 2007; Roberts et al., 2007; Baker et al., 2012; Tuttle et al., 2014]. Studies of restored river reaches
indicate, however, that the effects of greater physical complexity on the abundance and diversity of riparian
and aquatic organisms are ambiguous [Huryn and Wallace, 1987; Muotka and Laasonen, 2002; Lepori et al.,
2005; Palmer et al., 2010a, 2010b; Wy_zga et al., 2012b], either because the restored complexity did not facilitate
the required ecosystem processes or because other, unknown constraints limited ecological response.

In this context, there is a great need to characterize response curves of different river components that can
facilitate modeling of system responses to either planned manipulation or unplanned human or natural dis-
turbance. Response curves illustrate the response of a particular physical or biotic variable such as water
temperature to changes in a control variable such as discharge or riparian shading (Figure 4) [Vanderpoorten

Figure 4. Illustration of two forms of hypothetical response curves. The
control variable(s) would be the factor being manipulated through restora-
tion: examples include flow regime, sediment regime, extent of riparian
zone, connectivity with the floodplain, backwater habitat, connectivity with
the hyporheic zone, and so forth. The response variable(s) would be the
desired objective of restoration, such as nutrient retention, water tempera-
ture, macroinvertebrate biodiversity, fish biomass, and so forth. The shape
of the response curve can be quite diverse between different pairings of
control and response variables and different river ecosystems.
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and Durwael, 1999]. Operators of hydroelectric dams can predict exactly what modified flow releases from
the dam will cost in terms of lost revenue generation, for example, but river scientists typically cannot pre-
dict exactly what benefits will result in terms of greater recruitment of fish or riparian vegetation. Although
prediction of river system changes will never be as precise as economic analyses because of equifinality
and contingency in river ecosystems, recent research indicates the enhanced predictive ability that can
result from development of response curves [Arthington et al., 2006; Merritt et al., 2010; Shafroth et al., 2010].
King and Brown [2010] review several basin-scale flow assessment projects in Africa and southeastern Asia
that incorporated response curves to predict physical and biotic components of river ecosystems likely to
result from specified flow regimes. In the flow assessment for the Okavango River basin of southern Africa,
more than 4000 individual response curves were incorporated into a Decision Support System known as
DRIFT (Downstream Response to Imposed Flow Transformation) to evaluate the river ecosystem response
to diverse scenarios of flow regulation [King et al., 2014]. Response curves could also be very useful in deter-
mining where and when restoration is likely to have a significant beneficial effect on stream ecology or
water quality, and the conditions under which it will not.

There are at least two basic challenges in using response curves. The first is to quantify the relationship
between control variables such as physical channel complexity or flow regime and response variables such
as water quality or biological community characteristics, as discussed above. The second is to understand
the limitations in applying the response curve. As a hypothetical example, greater channel complexity could
enhance nitrate removal by 50%, but anthropogenic increases in nitrate loading could negate this improve-
ment. Or environmental flow releases could significantly increase habitat availability for native fish, which
nonetheless fail to recover because of competition from introduced species. Limitations beyond the scope
of most river restoration projects may help to explain many of the documented restoration failures [Bern-
hardt and Palmer, 2011; Doyle and Shields, 2012; Roley et al., 2012a].

Inherent in the concept of response curves is the ability to quantify how the extent and location of restora-
tion influence ecosystem function. For example, significant buffering by riparian zones of sediment and
nitrate fluxes to channels is likely to require some minimum proportion of channel length, minimum buffer
width, and specific ecological characteristics (e.g., plant community composition, soil composition) [Baker
et al., 2006; Weller and Baker, 2014]. Thresholds in system function appear to characterize many aspects of
physical and ecological form and process in rivers [Shafroth et al., 2010], and response curves can be used
to identify potential thresholds critical to ecologically successful restoration.

Another basic challenge is to identify all of the relevant dimensions of the site-specific context. For example,
flow regime is an important master variable that drives river ecosystem function, yet restoring natural range
of variability in flow regime [Poff et al., 1997] may not restore ecological function if other constraints such as
altered sediment regimes [Wohl et al., 2015], channel engineering, or invasive organisms limit river ecosys-
tem response [Pasternack, 2013]. A vital component of context is watershed-scale effects such as highly
altered inputs of water, sediment, nutrients, and contaminants from uplands and tributaries into the main
channel. Although several review papers identify watershed-scale effects as a dominant limitation to resto-
ration in many rivers [e.g., Bernhardt and Palmer, 2011; Doyle and Shields, 2012], there is little consensus on
how to effectively identify or mitigate these effects and only a small percentage of restoration projects
include watershed-scale action [Palmer et al., 2014b].

An additional challenge for river restoration is the large, and perhaps expanding, gap between knowledge
of processes such as sediment transport, as developed in physical experiments and numerical models, and
our ability to use that knowledge for prediction and/or measurement within real rivers in the context of res-
toration. Wohl et al. [2015] discuss some of the reasons for this gap, including lack of spatially extensive or
long-term measurements of sediment discharge on most rivers, the expense and logistical difficulty of
measuring sediment transport, especially bedload, in rivers, and the substantial spatial and temporal vari-
ability in sediment movement within river corridors. River restoration remains constrained as well by limita-
tions in our fundamental understanding of sediment dynamics and in methods for estimating sediment
supply [Wilcock, 2012].

An emerging trend and challenge in river restoration is increasing appreciation of the importance of incor-
porating climate change considerations and resiliency into restoration planning [Beechie et al., 2013]. Cli-
mate change may be accounted for in restoration in multiple ways: recognition that recent stream flows
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may not be representative of future flows (e.g., for determining channel capacity), increased emphasis on
creating thermal refugia, and emphasis on restoration methods that will be resilient to or mitigate climate
change [Beechie et al., 2013]. Moreover, climate change concerns have driven a profusion of studies investi-
gating the vulnerability of various fish species to climate change-related changes in flows, stream tempera-
tures, and hydrologic connectivity [Wenger et al., 2011; Wade et al., 2013; Jaeger et al., 2014]. Such studies
provide potential guidance for basin-scale restoration planning and prioritization.

5.4. Changes in River Restoration Within the Past Decade
In the decade since publication of Wohl et al.’s [2005] paper on river restoration, we note several ways in
which river restoration has changed, beyond those identified in section 3. These include: increasing use of
stream mitigation banking; development of new tools and technologies that facilitate acquiring and manip-
ulating information on river process and form; growing recognition of the importance of biological-physical
feedbacks in rivers; and more effective communication between practitioners of river restoration and the
river-science research community.

Stream mitigation banking (SMB) allows developers to offset alteration of streams by purchasing credits
through stream restoration at other sites. First developed by the U.S. Army Corps of Engineers in 2000, the
practice is spreading within the USA, despite the lack of consistent criteria for defining a ‘‘stream mitigation
unit’’ [Lave et al., 2008, 2010]. North Carolina has one of the most developed programs in the USA and this
program focuses on quantity in terms of length of stream and quality in terms of geomorphic characteristics,
with no requirements for ecological assessments [Lave et al., 2008]. The development of SMB has provided a
new impetus for stream restoration, but it also represents a major shift in the drivers of river restoration where
developers are no longer forced to restore rivers impacted by their development regardless of how much this
might cost [Lave et al., 2010]. Rather, a developer can avoid directly having to engage in restoration by pur-
chasing credits that other restoration projects have acquired [Lave et al., 2010]. Lave et al. show how this trad-
ing relies heavily upon the idea that destruction of a certain length of channel of a particular type can be
countered by the purchase of credits for a certain length of channel of the same type somewhere else. In
states where SMB is now commonplace, this practice is reinforcing a particular type of restoration that does
not accurately capture the range of ecological characteristics destroyed in one river or restored in another
[Lave et al., 2010]. Evaluation will be needed of the impacts of market penetration into an activity that in gen-
eral has been dominated by the academic and public-sector natural science, with occasional extension into
broader nature-society interfaces, as we show above. Indeed, Lave et al. [2010] argue that if this market pene-
tration continues, and given the dependence of markets upon simple and clear metrics, river restoration is
going to be increasingly blind to the kinds of scientific developments we have reviewed in this paper.

Emerging tools and technology applicable to research on rivers have been increasingly applied to restora-
tion. Our ability to measure topography has expanded greatly as a result of airborne and terrestrial lidar
[Hauer et al., 2014], multibeam bathymetry [Lejot et al., 2007], drones, and structure-from-motion photo-
grammetry [e.g., Fonstad et al., 2013]. Topographic measurements with improved temporal and spatial reso-
lution have contributed to restoration planning, detection of geomorphic change for monitoring [Wheaton
et al., 2010], and multidimensional morphodynamic modeling using high-resolution topography [Pasquale
et al., 2011] to guide restoration [Wilcock, 2012].

In addition to monitoring biotic response to physical manipulations of water or sediment fluxes or channel
geometry, river restoration and practice increasingly include explicit recognition of and, in the case of resto-
ration practice, reliance on, physical-biotic interactions that drive fluvial processes and restoration of desired
conditions (Figure 5) [Gurnell et al., 2012]. For example, simple, ecologically based restoration approaches
taking advantage of the ecosystem engineering provided by beaver have been proposed and imple-
mented, such as the use of beaver dam analogues to restore incised streams [Pollock et al., 2007, 2014; DeV-
ries et al., 2012]. The use of flow releases to promote recruitment of desired native riparian vegetation [Rood
et al., 2003] and/or scour of undesired species [Wilcox and Shafroth, 2013] present a contrast to restoration
approaches focused on plantings or mechanical vegetation removal. Dam decommissioning in Fossil Creek,
Arizona, USA triggered a set of ecogeomorphic feedbacks associated with regrowth of travertine steps, pro-
ducing rapid and dramatic restoration of physical and ecological processes [Fuller et al., 2011].

A final recent development in river restoration is improved communication between river scientists and
practitioners of river restoration. As restoration practice accelerated during the 1990s and early 2000s, a gap
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between research scientists and practitioners developed [Wilcock, 1997]. Within the USA, researchers pub-
lished numerous critiques of Natural Channel Design (NCD) methods and calls for process-based restoration
[e.g., Simon et al., 2007], prompting defenses of NCD and claims that the ivory tower misunderstood com-
mon restoration practices [e.g., Rosgen, 2008]. Although NCD remains the most widely accepted practice for
the restoration of shallow streams in the USA [Lave, 2009], the persistent divide between researchers and
practitioners [Cockerill and Anderson, 2014] has narrowed in some respects. Rhetoric regarding restoration
science and practice, as played out in journal papers, replies, and counter-replies, has cooled, perhaps
reflecting fatigue and/or recognition of common ground [Lave, 2009, 2012]. Academics have moved beyond
only writing critiques, to seeking to provide tools and training that aim to link river science and restoration
practice [Lave et al., 2010; Wilcock, 2012]. The availability of process-based training in stream restoration, for
example via university-sponsored restoration short courses and professional degree programs, has
expanded [Schmidt, 2008; Niezgoda et al., 2014]. Professional meetings (e.g., River Restoration Northwest)
have served as effective fora for connecting researchers and practitioners. Applied research directed toward
informing stream restoration has expanded, including laboratory experiments linked to stream restoration,
construction of full-scale flume facilities oriented toward addressing restoration questions and problems
[Wilcock et al., 2008; Singh et al., 2013], and development of morphodynamic models to guide restoration
[e.g., McDonald et al., 2010]. Researchers have also sought to provide tools accessible to practitioners for
addressing challenging issues such as addressing uncertainty [Wheaton et al., 2008; Wilcock, 2012], estimat-
ing sediment fluxes [Pitlick et al., 2009], and identifying river segments amenable to specific types of restora-
tion, such as what Wheaton refers to as the ‘‘cheap and cheerful’’ approach [Wheaton, 2013] of
reintroducing beaver (Castor spp.) to historically occupied river habitat in North America [Macfarlane et al.,
2014] and Europe [John and Klein, 2004].

Some of the criticisms levied by academics have, to some degree, been absorbed into stream restoration
practice. For example, evaluation of restoration through monitoring, the absence of which was a target of
criticism, remains generally inadequate but has been become more frequent. This may be especially true of
larger-scale restoration projects such as the Provo River restoration [Erwin et al., 2012] and the channel
reconstruction following the removal of Milltown Dam on the Clark Fork River, Montana [Montana, 2008].
Many of the challenges surrounding monitoring persist, however, including insufficient funds and monitor-
ing that, where present, may focus exclusively on detecting deviation from design guidelines rather than
on whether geomorphic and ecosystem processes have been restored, which can require different types of
baseline data [Downs et al., 2011]. Indeed, Morandi et al. [2014], in the evaluation of 44 French river restora-
tion projects, showed that most positive conclusions regarding river restoration tended to be associated
with the weakest evaluation strategies. Further, Kurth and Schirmer [2014] showed, in a consideration of 848

Figure 5. Conceptual diagram illustrating one set of potential ecogeomorphic feedbacks associated with restoration of high flows in
hydrologically altered rivers, where reintroduction of floods can produce sediment transport and deposition and associated geomorphic
changes that can create colonization sites for riparian vegetation. Recruitment of riparian vegetation can in turn produce hydraulic
changes that alter velocity fields and sediment deposition patterns, resulting in feedbacks to geomorphic processes, as well as ecosystem
and thermal changes. Center photo shows riparian seedlings recruited following environmental flow release on the Bill Williams River,
Arizona.
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Swiss restoration projects, that even if there was a clear evaluation strategy, the success of a project
depended on how success was defined in the first place.

One challenge to the expansion of monitoring is the lack of appetite among researchers, who may be more
focused on developing new process knowledge, for participating in monitoring, which may involve multi-
year field campaigns with minimal publication return and minimal funding. There are notable exceptions,
including contributions by researchers to developing standardized monitoring protocols, such as the
Columbia Habitat Assessment and Mapping Program (CHAMP) [Bouwes et al., 2011; Wheaton et al., 2012] or
NOAA’s River RAT program [https://www.webapps.nwfsc.noaa.gov/apex/f?p5275:1; Skidmore et al., 2012],
and to applying advanced instrumentation to monitoring [Schneider et al., 2011]. The more pervasive inad-
equate monitoring of indicators of restored ecological function, however, means that although adaptive
management remains a popular concept, it is not actually being implemented on most restoration projects.

Adaptive management has typically been applied to large-scale reconnection efforts such as experimental
floods in Grand Canyon [Melis, 2011] or restoring more natural water distribution patterns in the Everglades
[LoSchiavo et al., 2013] rather than reach-scale reconfiguration projects. In some of these large projects
adaptive management has led to useful advances in scientific understanding and practical management.
However, Olden et al. [2014] found that most experimental flow releases focus on a single biological variable
(primarily fish) rather than ecosystem processes and only a third of experimental flow releases are repeated,
even though management objectives are more than four times as likely to be achieved when ongoing
experimentation with flows (i.e., adaptive management) occurs.

Key gaps remain in approaches advocated by researchers and those commonly implemented by practi-
tioners. These include differences in the emphasis on understanding sediment balances [Wohl et al., 2015],
recognition of ranges of variability in geomorphic form and process, the applicability of reference reaches
and the bankfull discharge as guiding design criteria, and a continued emphasis in restoration practice on
grade control, bank stabilization, and other structural approaches [Doyle et al., 2007; Wilcock, 2012].

6. Concluding Remarks

The diverse forms of river restoration currently being practiced provide a testing ground for both scientific
understanding of rivers, and societal attitudes toward rivers and humanity’s ability to sustain river ecosys-
tems. River restoration has been undertaken with many purposes. A primary one, recreating the past, is
commonly not possible, either because the environmental context that resulted in former river processes
and forms no longer exists, knowledge of past river conditions is insufficient to underpin restoration, or river
systems follow complex trajectories that commonly make it impossible to return to a previous state [Dufour
and Pi�egay, 2009]. Absent the ability to return to some condition present prior to human alteration of a river
corridor, river restoration has the potential to enhance the self-maintaining character of a river and the
potential to provide ecosystem services such as flood control, nutrient retention, clean water, and biodiver-
sity. As numerous case studies and synthesis papers make clear, however, such effective river restoration
requires recognition of physical and ecological processes, diverse forms of connectivity within river net-
works, physical-biotic interactions, place-specific history and complexity [Brierley and Fryirs, 2009; Dufour
and Pi�egay, 2009; Fryirs and Brierley, 2009], and collaboration between river scientists and restoration practi-
tioners. Increasing emphasis on ecosystem services also has the potential to encourage restoration projects
to focus on a subset of processes that create a desired service rather than on the entire river ecosystem and
to treat symptoms rather than underlying problems [Palmer et al., 2014a]. To date, the majority of river res-
toration projects do not satisfy the central criteria of Palmer et al. [2005] for ecologically successful restora-
tion. These criteria are that ecological condition must be measurably improved and the river ecosystem
must be more self-sustaining and resilient to external perturbations so that only minimal postrestoration
maintenance is necessary. Issues surrounding the social meaning of restoration projects are rarely consid-
ered, even though they may be dominant in achieving implementation in systems where communities
have a say in how their environments are managed.

As a broad generalization, our survey of river restoration suggests that reconnection efforts are more likely
to be successful than reconfiguration efforts. Numerous syntheses and meta-analyses suggest that reconfi-
guration efforts, which commonly focus on the reach-scale, fail to effectively restore river functional integ-
rity with respect to water quality and biological communities [Bernhardt and Palmer, 2011; Violin et al., 2011;
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Doyle and Shields, 2012; Palmer and Hondula, 2014; Palmer et al., 2014a; Smucker and Detenbeck, 2014]. How
much of this failure stems from ineffective restoration of form, and how much from watershed-scale proc-
esses such as increased nutrient loading or limited biological connectivity that overwhelm the effects of
reach-scale form, remains unclear. Community participation in reach-scale, form-based reconfiguration of
rivers can enhance public awareness of and commitment to rivers, but the restoration process may instill a
false sense of accomplishment or complacency if ecological function is not restored. One of the implications
of the lack of success in many reconfiguration projects is that this type of project is most likely to be used in
stream mitigation banking, contributing to accelerated loss of ecologically functional streams.

Successful reconnection efforts include restoring flow regime [Tonkin et al., 2008], physically reconnecting
main channels with floodplains or secondary/backwater channels [Ogston et al., 2015; Theiling et al., 2015],
reintroducing natural ecosystem engineers such as beaver [Albert and Trimble, 2000; Pollock et al., 2014],
and removing barriers such as dams [Poulos et al., 2014]. Reconnection-based restoration that focuses on
restoring physical connectivity among the channel, floodplain, and hyporheic zone and restoring natural
range of variability in flow and sediment regimes can be more effective in restoring ecological function, but
requires explicit consideration of details such as the location, magnitude, duration, and timing of fluxes and
the existence of thresholds in river ecosystem response.

The primary limitations to either reconnection or reconfiguration efforts are not scientific understanding of
physical and ecological processes in rivers, however. Our review suggests that widespread inability to
restore full river function and ecological communities comparable to reference conditions reflects two pri-
mary constraints. The first is the divergence between scales of alteration and scales of restoration. Restora-
tion projects typically do not address basin-scale changes in water, sediment, nutrient, and contaminant
inputs to rivers and basin-scale changes in longitudinal, lateral, and vertical connectivity in rivers. Reach-
scale restoration efforts are particularly likely to be insufficient where the majority of the drainage basin has
been altered, but even basin-scale efforts that focus on a single variable such as flow regime, rather than
considering the full suite of variables that influence river ecosystems, are likely to be of limited success. The
second primary constraint is the sometimes substantial gap between society’s expectations of rivers, which
may be largely esthetic, and scientific understanding of rivers as dynamic systems that require some level
of disturbance and as ecosystems with numerous largely invisible functions such as hyporheic exchange.
This gap can result in societal support for cosmetic restoration efforts rather than acceptance of the impor-
tance of maintaining variable inputs and river form, such as those associated with floods. Although as scien-
tists we need to continue to develop our fundamental knowledge of river process and form, the constraints
imposed by basin-scale changes and societal expectations suggest that we need to put equal emphasis on
education and outreach connected with river restoration.

River restoration has moved to the forefront of applied water-resources science during the past 50 years,
enhancing public awareness of rivers as complex ecosystems in which carefully designed human interven-
tions can potentially restore environmentally beneficial processes and aquatic and riparian communities.
We still have a long way to go, however, in mitigating the continuing rapid and widespread loss of rivers as
ecosystems that is occurring globally. Continued development of the research community’s ability to mea-
sure, simulate, and work with river systems, and to collaborate with society in understanding and managing
rivers, can only benefit rivers and humanity.
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